Conclusion

The empirical generalizations of Table I are based on the existing experimental evidence. This evidence is neither abundant nor entirely compelling; additional facts would certainly be useful in order to substantiate the present proposal. As a matter of fact, Table I might be of some help in carrying out future experiments.

From a more theoretical point of view, the connection between labilization modes and stereochemistry has been shown to be compatible with a detailed ligand field analysis. The formulation of electronic selection rules is an interesting feature apparently underlying the photochemistry of both the $d³$ and $d⁶$ complexes.

References and Notes

- (1) D. Strauss and P. C. Ford, *J. Chem. SOC., Chem. Commun.,* 194 (1977).
- (2) E. Zinato in "Concepts of Inorganic Photochemistry", A. W. Adamson and P. D. Fleischauer, Ed., Wiley Interscience, New York, N.Y., 1975, Chapter 4.
-
- (3) P. C. Ford, R. E. Hintze, and J. D. Petersen, ref 2, Chapter 5. (4) MA_3X complexes exchanging X are transformed into MA_3S and pose no stereochemical problem. In a few cases, diacido complexes exchange A and give rise to $MA₃XYZ$; these will be classified separately.
- *(5)* A. W. Adamson, *J. Phys. Chem.,* **71,** 798 (1967).
- (6) L. G. Vanquickenborne and A. Ceulemans, *J. Am. Chem.* **SOC.,** 99,2208 (1977).
- (7) L. **G.** Vanquickenborne and A. Ceulemans, *J. Am. Chem.* **SOC., 100,** 475 (197X). 475 (1978)
- **(8)** R. A. Pribush, R. E. Wright, and A. W. Adamson, *J. Am. Chem.* **SOC.,** 99, 2495 (1977).
- (9) M. Wrighton, H. B. Gray, G. *S.* Hammond, and V. Miskowski, *Inorg. Chem.,* **12,** 740 (1973).
- (10) L. Viaene, J. D'Olieslager, and S. De Jaegere, *Inorg. Chem.,* **14,** 2736 L. viaelit
(1975).
- (1 1) The quantum yield of the first two substitution reactions involving the cobalt(III) amines is very much (\sim 100 times) smaller than for the other complexes of the series; it should be noted that the latter are characterized by a much stronger ligand field. At the same time, the stereoretention is only 70 or 80% for the cobalt amines, whereas it is 100% for the other complexes. See also N. A. P. Kane-Maguire and C. H. Langford, *Inorg. Chim. Acta,* **17,** L29 (1976). (12) C. Kutal apd A. W. Adamson, *Inorg. Chem.,* **12,** 1454 (1973).
-
-
- (13) J. K. Burdett, *Inorg. Chem.,* **15,** 212 (1976). (14) R. A. Pribush, C. K. Poon, C. M. Bruce, and A. W. Adamson, *J. Am. Chem. Soc.,* 96,3027 (1974); P. S. Sheridan and A. W. Adamson, *ibid.,* 96, 3032 (1974).
-
- (15) J. Sellan and R. Rumfeldt, *Can. J. Chem.,* **54,** 519 (1976). (16) M. Muir and W.-L. Huang, *Inorg. Chem.,* **12,** 1831 (1973).
- (17) **1,4,8,1l-Tetraazacyclotetradecane.**
- (18) C. Kutal and A. W. Adamson, *J. Am. Chem. SOC.,* 93, 5581 (1971); *Inorg. Chem.,* **12,** 1990 (1973).
-
-
- (19) M. Elian and R. Hoffmann, *Inorg. Chem.*, **14**, 1058 (1975).
(20) A. Rossi and R. Hoffmann, *Inorg. Chem.*, **14**, 365 (1975).
(21) J. K. Burdett, J. *Chem. Soc., Faraday Trans. 2*, 70, 1599 (1974).
(22) J. K. Jørgense
- Amsterdam, 1971.
(23) By holohedron symmetry is meant the symmetry obtained by modifying
- each metal-ligand axis so as to generate $D_{\alpha h}$ symmetry along the axis;
- for more details see ref 6, 22, and 27.
- (24) J. Petersen, R. Watts, and P. C. Ford, *J. Am. Chem. Soc.*, **98**, 3188 (1976).
(25) J. K. Burdett, *Inorp. Chem.*, 14, 375 (1975).
- (25) J. K. Burdett, *Inorg. Chem.,* **14,** 375 (1975). (26) L. Viaene, J. D'Olieslager, and S. De Jaegere, *J. Inorg. Nucl. Chem.,* **37,** 2435 (1975).
- (27) C. E. Schaffer, *Theor. Chim. Acta,* **4,** (2), 166 (1965).
- (28) J. D. Petersen and F. P. Jakse, *Inorg. Chem.,* 16, 2845 (1977).
- Contribution from the Institut fur Strahlenchemie im Max-Planck-Institut fur Kohlenforschung, D-4330 Mulheim a.d. Ruhr, West Germany

Nature of the Lowest Excited States and Dynamic Behavior of Group 6B (Diazene) pentacarbonylmetal Complexes

C. C. FRAZIER III and H. KISCH*

Received May *4,* 1978

Electronic absorption and emission data are reported for $(diazene)M(CO)$ ₅ (M = Cr, *Mo*, *W*; diazene = trans-dicyclohexyldiazene, 2,3-diazanorbornene, **4-R-3,3-bis(methoxycarbonyl)-** 1-pyrazoline (R = isopropyl, phenyl), pyridazine, cis -azobenzene, benzo[c]cinnoline). The lowest absorption band is assigned to a metal \rightarrow diazene charge-transfer transition (CTML) on the basis of solvent, ligand, and temperature effects and the next higher band is assigned to a metal-centered transition (LF). Dynamic vis-UV spectroscopy at -100 to -185 °C gives evidence for small differences in the contribution of π bonding to the M-N bond and for restricted rotation around this bond. In addition to this fast process, a slow 1,2-shift of the M(CO)₅ group along the N=N linkage occurs at higher temperatures as demonstrated by dynamic ¹³C and ¹H NMR spectra.

Preparatively and structurally, transition-metal complexes of diazenes have been increasingly investigated during the last decade.' The electronic spectroscopy of these compounds has not been explored in a comparable fashion. Recently the lowest absorption band in the spectra of the π complexes bis(triethylphosphine)(trans-az0benzene)nickel has been lowest absorption band in the spectra of the π complexes
bis(triethylphosphine)(*trans*-azobenzene)nickel has been
assigned to an $n \rightarrow \pi^*$ transition on the basis of its variation upon introduction of substituents in the para position of azobenzene.2 Tentative assignments of the two low-energy bands of the σ complexes $Cr(CO)_{5}(cis$ -azobenzene)³ and $M(CO)_{5}$ (benzo[c]cinnoline)⁴ (M = Cr, Mo, W) as $n \rightarrow \pi^{*}$ bands of the σ complexes Cr(CO)₅(cis-azobenzene)³ and
M(CO)₅(benzo[c]cinnoline)⁴ (M = Cr, Mo, W) as $n \rightarrow \pi^*$
and $\pi \rightarrow \pi^*$ of the coordinated diazene ligand have appeared while this work was in progress. Comparison with the well-investigated spectra of $W(CO)_{5}(L)$, where L is an oxygen or nitrogen σ donor like acetone or an amine,⁵ points to the

more likely assignment of these transitions as ligand field (LF) and charge transfer $M \rightarrow$ diazene (CTML). In this paper this latter assignment is experimentally supported by examining the influence of the metal, the diazene ligand, the solvent, and the temperature on the low-energy bands of a series of pentacarbonylmetal σ -diazene complexes. Some of the tungsten compounds exhibit emission at low temperature. With regard to the current interest⁶ in low-lying CTML states of transition-metal compounds we note that these diazene complexes constitute the fifth class of substituted mononuclear metal carbonyls having CTML lowest excited states. The other examples known are $(L)W(CO)₄$ (L = 1,10-phenanthroline, 2,2'-bipyridine,⁷ 1,4-diazabutadienes⁸), $(L)\overline{W}(CO)$ ₅ $(L = 4-R$ -pyridine $(R \text{ is an electron-withdrawing group like})$ CN, CH₃CO, etc.)^{9a}), $(C_5H_5)Mn(CO)_2(NCAT)$ (Ar = C₆H₅)

Table **I.** Physical Data for Some (L)M(CO), Complexes

^{*a*} At room temperature in *n*-hexane. ^{*b*} In closed capillary tubes. *c* Highest peak in the mass spectrum; corresponds to molecular ion except for 3c and 3d $(M^+ - 28)$; MAT-CH5 instrument, $I_v = 70$ eV.

and para-substituted derivatives^{9b}), and the carbene complexes $ArC(OCH₃)Cr(CO)₅.^{9c}$ The complexes studied in this work show two types of dynamic processes: restricted rotation around the M-N bond and a 1,2-shift of the pentacarbonylmetal fragment along the $N=$ N bond. The occurrence of the latter process is demonstrated by dynamic ${}^{1}H$ and ${}^{13}C$ NMR spectra, whereas evidence for the former process comes from dynamic electronic absorption spectroscopy.

Results and Discussion

Synthesis. The recently published thermal reaction of $M(\text{CO})_5$ (THF) with the appropriate diazene^{3,4,10-12} has been used to prepare several of these complexes. However, we find also4 that in most cases the rate of reaction is increased if it is performed photochemically. This method was used to prepare the new complexes **IC, 2e, 3b, 3c, 3d, 3e,** (2- $Mepy)W(CO)$ ₅ (Mepy = methylpyridine) (4), and (2- $C Npy$)W(CO)₅ (CNpy = cyanopyridine) (5). Purification was achieved by column chromatography on silica gel. In all compounds the nitrogen ligand is σ bonded to the metal as demonstrated by comparison of IR, **UV,** and NMR data with those of the published^{3,4,9,10} compounds (Tables I and II). The metal carbonyl IR absorptions of all pyrazoline complexes **(IC, 3c, 3d)** contain a split "E" band indicating deviations from local C_4 , symmetry of the M(CO), fragment. By analogy with the known structure of the corresponding tetracarbonyliron complexes¹³ we assume that the pyrazoline ligands are bonded to the metal via the $N(1)$ nitrogen atom (Figure 1). The unsymmetrical coordination of the diazene ligand is most clearly demonstrated by the ¹H and ¹³C NMR data (see also Experimental Section) of, for example, the diazanorbornene complex **3b:** the bridgehead protons give rise to two broad apparent singlets at δ 4.1 and 4.3 (relative to Me₄Si), the corresponding carbon atoms appear at δ 78.03 and 87.4, and the values for the free ligand are **6** 4.7 and **75.5,** respectively. Coordination of the 2-cyanopyridine via the cyano group is

Figure 3. Variation of the $M \rightarrow$ diazene charge-transfer energy (CTML) of (diazene)M(CO)₅ complexes as a function of the n_1 – π^* energy of the free diazene: (1) M = Cr, (2) M = Mo, (3) M = W.

excluded on the basis of the same $\nu(CN)$ frequency of 2230 cm^{-1} , in toluene, for the free and complexed ligand.

Room-Temperature Electronic Spectra. The lowest energy absorption band of the group 6B pentacarbonyl diazenes studied in this work shows a characteristic blue shift as the polarity of the solvent increases (Table 11). The band moves within a range of 1900-3200 cm⁻¹ on going from *n*-hexane to acetonitrile. In the case of $Mo(CO)_{5}(pyrid)$ (pyrid = pyridazine), for example, the band apparently moves under the next absorption maximum on exchanging n-hexane for toluene as a solvent. This typical solvent effect is shown in Figure 2. The observed solvent dependence is comparable to the shift of 3800-4500 cm⁻¹ observed for the CTML state of group 6B $M(CO)₄(1,10\text{-phen})$ (phen = phenanthroline) complexes on substituting cyclohexane for acetonitrile as the solvent.^{7,14} The transition energy of the low-energy band is strongly dependent on the diazene ligand. With tungsten as the metal center, a difference of 5100 cm^{-1} is realized on exchanging 2,3-diazanorbornene (Figure 1, **b**) for benzo $[b]$ cinnoline (Figure 1, **g).** Thus, the two lowest bands become separated by $5000-7000$ cm⁻¹ in the case of the azobenzene and benzo- $[c]$ cinnoline complexes (Table II). The continuous decrease in absorption energy from **3b** to **3g** parallels the expected lowering of the $\pi^*(N=N)$ level of the free diazenes on going from **b** to **g**.¹⁵ A plot of this energy vs. that of the $n \rightarrow \pi^*$ transition of the free ligand, taken as a rough measure for the energy of the $\pi^*(N=N)$ level, clearly shows that both chromium and tungsten complexes experience the same influence of the diazene ligand (Figure 3).

Except for the benzo[c]cinnoline compounds **lg** and **3g,** an approximate linear correlation is observed. For the same ligand, e.g., pyridazine (Figure 1, **e),** the transition energy is

a At room temperature; band positions are X 10³ cm⁻¹; numbers in parentheses are e X 10⁻³ [L mol⁻¹ cm⁻¹]. CTML and LF designate the M \rightarrow diazene charge transfer and the ligand field jaborptions, respectively because of poor solubility. I Shows only the usual sharpening. R Similar to spectrum indicated in parentheses.

citation at 23.2 × 10³ cm⁻¹. Data known for free ligands (see Figure 1): (e) 23.8 × 10³ cm⁻¹;³⁴ (g) 13.6, 20.4 × 10³ cm⁻¹;³⁵ excitation spectra match absorption spectra at <33.3 × 10³ cm⁻¹. ^bUncorrec K; ex- $\ddot{}$

 ν (CO) ("A₁2") 1919

 $\nu(\mathrm{CO})$ ("E") 1944

 T , C 25

complex e^b

Table IV. Temperature-Dependent ν (CO) Bands of
M(CO)₃(pyrid) Complexes⁴

2738 *Inorganic Chemistry, Vol. 17, No. 10, 1978* C. C. Frazier and H. Kisch

(Diazene)pentacarbonylmetal Complexes

Figure 4. Simplified molecular orbital diagram for (cis/trans-diazene)and $(amine)M(CO)$ _s complexes. See also ref 18.

related to the metal in the order $Mo > W > Cr$ as observed for the CTML transitions in $M(CO)₄(1,10\text{-}phen)$ complexes.⁷

On the basis of the above observations, in particular their analogy to $W(CO)_{5}(4-R-py)^{9,16}$ and $M(CO)_{4}(1,10\text{-}phen)$, we assign the lowest energy absorption band in the room-temperature solution spectra of group 6B pentacarbonyl diazenes to an $M \rightarrow$ diazene charge-transfer transition. The next lowest energy absorption band is only slightly influenced by variation of the diazene ligand (Table 11); for the tungsten and chromium complexes the largest difference in *n*-hexane is 1100 and 1300 cm^{-1} , respectively. For a given diazene ligand the transition energy varies with the metal in the order $Mo > W$ $>$ Cr; the ordering Mo $>$ W as observed for the unique pyridazine complexes contradicts simple ligand field predictions but is in line with other (amine) $M(CO)$ ₅ compounds having LF bands in the order $Mo \ge W$.^{5c,16} Solvent dependence is small, with maximal shifts of 1000 cm^{-1} on going from *n*hexane to acetonitrile. These observations are consistent with the characteristics of ligand field transitions. We therefore assign this absorption band to a metal-centered $d_{yz,xz} \rightarrow d_{x^2-y^2,z^2}$ transition (LF, vide infra).

In addition to this experimental evidence, the band assignments are supported by the following qualitative discussion of the electronic structure of these compounds: The essential features of the frontier orbitals of an $M(CO)_{5}(cis/trans$ diazene) complex are easily deduced by comparison with an $M(CO)$ ₅(amine) compound. Figure 4, shows a simplified molecular orbital diagram describing the interaction of an amine or diazene with a square-pyramidal $M(CO)$, fragment.^{17,18} The stabilization of the amine lone-pair orbital upon complex formation is approximately **2** eV as was deduced from photoelectron spectra of $W(CO)$ ₅(NH₃).¹⁸ Due to ab initio SCF-MO calculations on $Cr(CO)_{5}(NH_{3})$ and $Cr(CO)_{5}(PH_{3}),$ the highest occupied orbitals have some (\sim 30%) CO(2p) character but are predominantly localized on the metal (3d, \sim 70%).¹⁸ Accordingly, the lowest electronic transitions in $Cr(CO)_{5}(L)$ (L = amine, phosphine) were assigned^{17a} as ligand ~70%).¹⁸ Accordingly, the lowest electronic transitions in Cr(CO)₅(L) (L = amine, phosphine) were assigned^{17a} as ligand field (LF) d_{yz,xz} → d_{x²-y²,². If L is an aromatic amine like a substituted pyridine, t} in the region of the antibonding metal levels giving rise to a Very recently it has been shown that the corresponding transition energy decreases as more electron-withdrawing groups are introduced in the 4-position of the pyridine ring.^{9,16}

The relevant frontier orbitals of an $N=N$ group are depicted on the left side of Figure 4. For the diazenes in Figure 1, **a-g,** the nonbonding n_1 orbital lies between 8 and 9 eV and the n_2 level at $10-12$ eV.^{19,20} Both orbitals may be thought to arise

Figure 6. Temperature dependence of low-energy absorption bands of (L)W(CO), in **2,2-dimethylbutane/n-pentane** (8:3 by volume): (a) L = 2,3-diazanorbornene **(b)**, **(b)** L = pyridazine **(e)**, **(c)** L = 4-isopropyl-3,3-bis(methoxycarbonyl)-1-pyrazoline **(c)**, **(d)** L = *cis*-azobenzene (f), (e) L = pyridine,⁹ (f) L = piperidine.⁵

from interaction between the two "lone pairs" localized on each nitrogen atom. Complex formation via n_1 should be analogous to the amine case and is expected to decrease the n_1-n_2 interaction. As a consequence thereof, the $n₂$ orbital should be raised in energy and the corresponding n level of the complex is most likely above the $\pi(N=N)$ orbital. The availability of a low-lying $\pi^*(N=N)$ orbital distinguishes the diazene complex from the related amine complex: it allows the formation of a weak π back-bond²¹ via the d_{xz} (or d_{yz}) orbital²⁵ complex from the related amine complex: it allows the
formation of a weak π back-bond²¹ via the d_{xz} (or d_{yz}) orbital²⁵
and is responsible for the occurrence of a low-energy M \rightarrow
diagonal change transfer trans diazene charge-transfer transition. However, in the case of an appropriately substituted aromatic amine, a low-lying π^* level may be also available and the main features of the electronic structure should be the same as for the diazene complex. Accordingly, it seems not surprising that shape and position of the low-energy absorption bands are nearly identical for $W(CO)_{5}$ (4-Acpy) (Acpy = acetylpyridine) and W- (CO) ₅(pyrid). Figure 5 shows the corresponding spectral changes obtained by exchange of the piperidine ligand by pyridine, 4-acetylpyridine, and pyridazine. Included are the spectra of (2-methy1pyridine)- and (4-methy1pyridine) pentacarbonyltungsten which will be discussed later.

cooling to -185 °C as a function of the CTML energy at room temperature.

Temperature Dependence of Electronic Absorption Spectra. All the *cis*-diazene complexes studied in this work exhibit a characteristic temperature dependence of the low-energy absorption bands. The CTML band is shifted by $1-2.6 \times 10^3$ cm⁻¹ and the LF band only by $0.2-0.7 \times 10^3$ cm⁻¹ to higher energy upon cooling from room temperature to -185 °C in **2,2-dimethylbutane/n-pentane** (8:3) as a solvent. Depending on the diazene ligand involved, three types of spectral changes are observed (Figure 6; Table 11) upon cooling.

The broad band $(CTML + LF)$ of the diazanorbornene complexes **lb** and **3b** sharpens up and decreases in its oscillator strength by approximately 20% (after correction for solvent contraction) (Figure 6a). This decrease most likely originates from a diminished intensity of the CTML absorption since the LF bands in no case show a decrease upon cooling (Figure 6d,f). The pyrazoline and pyridazine complexes **IC, le, 3c, 3d,** and **3e** exhibit the second type of behavior (Figure 6b,c). Since for both series of compounds the CTML absorption is clearly separated from the LF band, the hypsochromic shift of the former produces a one-band spectrum similar to that of the diazanorbornene complex **3b** at room temperature. The oscillator strength of the CTML band (LF assumed to be constant) is not changed for the pyridazine complex but decreases by approximately 20% for the pyrazoline complexes. The third type of behavior is shown by the *cis*-azobenzene and benzo[c]cinnoline complexes **lg, 3f,** and **3g** (Figure 6d). In this case the separation of the CTML and LF bands is large enough to prevent their overlap despite the large shifts of $1.4-2.6 \times 10^3$ cm⁻¹. The oscillator strength of the CTML band does not change for **3f** and **3g** but decreases by about 20% for

1g. The observed changes in the intensity of the CTML band seem to be determined by the energy of the $\pi^*(N=N)$ orbital of the free ligand. Diazenes with high-lying π^* levels (Figure 1, **b-d)** give rise to a CTML band of decreasing intensity upon cooling solutions of the corresponding complex. No changes or only weak changes are found for complexes containing diazenes with low-lying π^* orbitals (Figure 1, $e-g$). As in the case of the dependence of the CTML energy on the energy of the diazene $n_1 \rightarrow \pi^*$ state (Figure 3), the complex 1g does not follow this relationship.

Inspection of Table I1 clearly reveals that the amount of the hypsochromic shift of the CTML band is related to the energy of this transition. A plot of $\Delta \bar{\nu}$, defined as $\bar{\nu}_{\text{max}}(\text{CTML})$, -185 °C) – $\bar{\nu}_{\text{max}}$ (CTML, room temp), vs. the CTML energy value at room temperature gives a linear correlation for the tungsten compounds **3c-3f** (Figure 7).26 The lower this energy, the larger is the measured $\Delta \bar{\nu}$ value. As in the case of the CTML energy dependence on the (n, π^*) energy of the free diazene (Figure 3), the benzo $[c]$ cinnoline complex does not follow this linear correlation.

From this experimental evidence it is assumed that the behavior on cooling is largely determined by the energy of the

Figure 8. Rotational orientations of the diazene ligand relative to the M(CO)₅ fragment: **(A)** eclipsed conformation $(\zeta = 0^{\circ})$; **(B)** staggered conformation ($\zeta = 45^{\circ}$).

C. C. Frazier and H. Kisch C., $\frac{1}{2}$
 $\frac{1}{2$ lowest unoccupied molecular orbital (LUMO) of the complex which should have predominantly $\pi^*(N=N)$ character. If this assumption is valid, other σ complexes of n donors with low-lying π^* levels should have qualitatively the same temperature-dependent electronic absorption spectra. The spectral changes observed for $W(CO)_{5}(py)$ (Figure 6e; compare also ref 9) point already to a similar behavior since they differ markedly from the usual sharpening and weak blue shift as found, for example, for $W(CO)_{5}(pip)$ (pip = piperidine), a complex without a corresponding low-energy ligand π^* orbital (Figure 6f; compare also ref 9). The compound $W(CO)_{5}$ -(4-Acpy) finally shows exactly the same temperature-dependent spectrum as the pyridazine complex **3e** and thus confirms the necessary presence of a low-lying LUMO to observe this temperature effect.

The dominating role of this π^* orbital for the behavior upon cooling suggests that the latter is largely determined by the amount of π bonding between the metal and the N=N group. This would lead to some double-bond character of the $M-N$ bond and therefore to restricted rotation around this bond. **As** a consequence thereof we assume that this type of complex exists in solution as two conformers. Conformer **A** represents the higher energy eclipsed conformation in which the $N=N$ bond is aligned along one equatorial M-CO axis (Figure 8). In this conformation the destabilizing steric interaction between the lone-pair orbital on the noncomplexed nitrogen and the equatorial CO groups may be balanced to some degree by the stabilizing effect of the, however weak, π bond.

The latter should be strongest in this conformer due to maximum interaction of the $\pi^*(N=N)$ and metal d_{vz} orbitals.²⁵ This electronic stabilization of the eclipsed conformer should be predominantly responsible for the possibility to detect it by UV spectroscopy. Rotation around the M-N bond by an angle of 45° is expected to slightly decrease this interaction²⁷ but strongly reduce the steric hindrance. The resulting staggered conformer B should, therefore, have a lower energy content than A. The relative concentrations of both conformers depend on the difference of their free energies.³⁰ A simple estimation³¹ based on the concentration changes observable by UV spectroscopy gives a very rough value of $\Delta G^{\circ} = 0.3-1$ kcal/mol. It is therefore assumed that the room-temperature spectrum of a (diazene) pentacarbonylmetal complex arises from a mixture of the two conformers **A** and B with the latter in excess over A. Upon cooling, the equilibrium is shifted even more in favor of the staggered conformer B and the spectrum at -185 °C should be that of almost pure B. Due to the overlapping CTML bands and their large bandwidth, e.g., 5×10^3 cm⁻¹ for 3f, it is not possible to determine the ratio of both conformers, however. The hypsochromic shift of the CTML band on going from **A** to B may be due to the lower ground-state energy of B if the same CTML excited-state energies are assumed for both conformers. From Figure 7 it is evident that a large shift of the CTML band is connected with a low energy of the ligand π^* orbital. The lower this energy. the larger should be the double-bond character of the M-N bond and the higher should be the

(Diazene)pentacarbonylmetal Complexes

concentration of the eclipsed conformer A. Introduction of a substituent in the α position of the complexed nitrogen atom should lead to a strong steric repulsion of this group by the equatorial CO groups and therefore shift the conformational equilibrium in favor of the staggered conformer **B.** This should result in a lower concentration of A and therefore in **a** smaller shift of the CTML band upon cooling. Thus, the dominating electronic influence of the ligand π^* orbital may be compensated to some degree by the opposite steric effect of a substituent in the α position. These considerations are experimentally supported by the different temperature dependencies of the W(CO), complexes of 2-methylpyridine and 4-methylpyridine. Whereas the latter exhibits a shift of 1.4 \times 10³ cm⁻¹, similar to that of \sim 1.1 \times 10³ cm⁻¹, as found for the unsubstituted pyridine complex (Figure 6e), the former gives only a shift of 0.5×10^3 cm⁻¹. Further support comes from comparison of the absorption spectra of (4-CNpy) W- (CO) ₅ and $(2-CNpy)W(CO)$ ₅ in isooctane at room temperature. Due to the strong electron-withdrawing property of the cyano group, the 4-cyano-substituted complex exhibits the CTML band at the relatively low energy of 22.0×10^3 cm⁻¹.⁹ In the 2-cyano isomer this band is shifted by 3.3×10^3 cm⁻¹ to higher energy and appears at 25.3×10^3 cm⁻¹. These data clearly demonstrate the strong steric influence of the α substituent on the CTML energy by locking the conformational equilibrium predominantly into the staggered form B. The $(2-Mepy)$ - and $(4-Mepy)W(CO)$ ₅ complexes show the same type of behavior: the former has the CTML band 0.6 \times 10³ cm⁻¹ at higher energy than the latter (28.5 \times 10³ cm⁻¹). This steric effect should be even stronger in the case of a trans-diazene complex resulting in a very low concentration of the eclipsed conformer. Accordingly no change, except the usual sharpening, is observed for the lowest absorption band of **(trans-dicyclohexy1diazene)pentacarbonylchromium (la)** upon cooling.

It is interesting to note that the azobenzene and benzo- [clcinnoline complexes **3f** and **lg** have two bands in the region of the LF transitions (Table I, Figure 6d). Upon cooling, the lowest in energy of these bands gains markedly in intensity while the other almost disappears (Figure 6d). As discussed above, these complexes should have the greatest amount of π bonding in the eclipsed conformation A. As a consequence of the larger energy gap between the d_{yz} and d_{xz} orbitals, two different LF bands may be seen (Figure **4).** Upon cooling, the energy gap should be decreased due to the weaker π bonding in the staggered conformer and the intensity of the higher energy LF transition should diminish, as found experimentally.

By analogy with other $(L)W(CO)$, compounds⁹ it is expected that the tungsten diazene complexes should exhibit singlet-triplet LF absorptions slightly red shifted from the singlet-singlet bands.³² The room-temperature solution spectra do not readily allow the $S \rightarrow T$ absorptions to be seen, but on cooling, bands in the appropriate region are seen for the tungsten diazene complexes of cis-azobenzene and benzo- [c]cinnoline, **3f** and **3g**, at \sim 24.1 (sh) and \sim 23.2 (sh) \times 10³ cm-', respectively (Figure 6d). The pyrazoline complexes **3c** and **3d** have a shoulder on the lower energy side of the CTML band. This shoulder is difficult to see at room temperature but is easily recognized at \sim 22.5 \times 10³ cm⁻¹ in the -100 °C spectrum (Figure 6c). Below -100 °C the CTML band shifts and diminishes and the shoulder disappears. Due to the location of the band to the lower energy side of the CTML band, due to the relatively low energy position compared to the "singlet-triplet'' LF band, and due to the unusual behavior on cooling, these shoulders may be preliminarily assigned as singlet-triplet CTML absorptions.

Bands attributable to LF or CTML triplets were not found

Figure 9. Electronic absorption (curve 1) and emission (curve **2)** spectrum of (cis-azobenzene)W(CO)₅, 3f; in 2,3-dimethylbutane/ n-hexane **(8:3** by volume) at **77** K.

for W(CO)₅(diazanorbornene). The shoulder at \sim 23.5 \times 10³ cm⁻¹ seen at -185 °C in W(CO)₅(pyrid) most probably originates from the CTML state; however, it may be also of LF singlet-triplet character. The spectra of the chromium and molybdenum diazene complexes do not possess features analogous to the triplet absorptions observed for the tungsten compounds.

The above observations may be generalized as follows. If a $W(CO)$ ₅(*cis*-diazene) complex has a CTML absorption that is well removed from the lowest LF band, then the singlettriplet LF transition will be observed and a singlet-triplet CTML band will not be found. If the broad CTML absorption covers the expected position of the LF triplet, then the charge transfer apparently acquires triplet character and the spectrum will exhibit a CTML singlet \rightarrow triplet absorption.

Luminescence Measurements. Since cooling of solutions of $M(CO)$, (*cis*-diazene) complexes results in marked changes in the electronic absorption spectra, causing in some instances an apparent change in the nature of the lowest excited state, one is led to speculate on the effect that this has on the emission properties of the complexes. Accordingly we attempted to measure the luminescence of these complexes in solution at 77 K and in a few instances also at room temperature. In **EPA** the majority of the samples decompose and the characteristic emission maxima^{5c} of $W(CO)$, E_tOH) and/or $W(CO)_{5}(Et_{2}O)$ at $\sim 18.7 \times 10^{3}$ cm⁻¹ are observed. Only in **2,3-dimethylbutane/n-pentane** did five of the diazene complexes give rise to emission at 77 K but in no case at room temperature either in solution or in the solid state. The data are summarized in Table 111, and Figure 9 shows the absorption and emission spectrum of the *cis*-azobenzene complex **3f.** Due to the fact that some of the emissions occur at too high energy, e.g., **3f,** to arise from the related CTML states and because the relative energetical ordering does not correspond to that expected from the ranking of the CTML absorptions, it can be concluded that emission does not in every case come from a CTML excited state as was found for $(4-Y-py)W(CO)$, for $Y = cyano$, acetyl, benzoyl, and formyl by Wrighton, Abrahamson and Morse.^{9a} The reported emission maxima for these latter complexes are in the range $17.0-15.2 \times 10^3$ cm^{-1.9} From the corresponding data of 18.0 and 18.2×10^3 cm⁻¹ for the *cis*-azobenzene and benzo[*c*]cinnoline complexes **3f** and **3g** and from the observation of probable singlet-triplet LF absorption bands at -185 °C we propose that emission in this case originates from states of increased LF character. The absorption spectra of the pyridazine complex 3e and of $(4-\text{Acpy})\hat{W}(\text{CO})_5$ show an almost identical temperature dependence, as already mentioned, and have very similar emission energies of 17.2 and 17.0×10^3 cm-', respectively. From this evidence we assume that the emitting state of **3e** has CTML character. The two pyrazoline

species	$T, \degree C$	C(1), C(1)'	C(2), C(2)'	C(3), C(3)'	$C(4)$, $C(4)'$	C(5), C(5)'	$C(6)$, $C(6)'$	
g	room temp	145.8	131.9	131.6	129.4	121.6	121.1	
1g	room temp -60		132.6 133.4 144.9 ^b	130.8 130.9 131.7	130.1 129.4 129.9	121.6 120.8 121.4		
3g	room temp -60		133.1 132.2 133.9	131.8 131.1 131.9	130.4 130.4	121.7 121.0 122.3		

Table V. Temperature Dependence of ¹³C NMR Spectra^a

 a In CDC1₃ solution; chemical shifts in δ values relative to Me₄Si as internal standard; see also Figure 11 and ref 4. b Weak signal.

Figure 10. Temperature-dependent 270-MHz 'H NMR spectra of (benzo[c]cinnoline)Cr(CO)₅, 1g, in CDCl₃. δ values are relative to CHCl₃, δ 7.27, as internal standard.

complexes 3c and 3d have weak emission bands at energies that seem too low for LF states and which probably arise from the CTML triplets already discussed.

Infrared Spectroscopy. Additional evidence for the existence of a conformational equilibrium (Figure 8) for $M(CO)_{5}$ -(diazene) and related complexes should be obtainable also from physical measurements other than electronic. We therefore have examined the temperature dependence of the $\nu(CO)$ IR absorptions. A basic experimental difficulty is the poor solubility of these complexes in hydrocarbon solvents, the medium in which the most significant changes were observed by electronic spectroscopy. It was therefore not possible to measure spectra at temperatures lower than -70 °C.

Due to the presence of restricted rotation around the metal-nitrogen bond, the local symmetry at the metal cannot be approximated by C_{4v} which would lead to three ν (CO) bands $(2 A_1 + E)$.^{36,37} Most of the diazene complexes at room temperature, therefore, exhibit a weak "B1" mode and a split "E" band,³⁸ whereas the pyridazine and diazanorbornene compounds, e.g., 2e, 3b, show an unsplit "E" band and no "B₁" mode (Table 11). Upon cooling solutions of the chromium or molybdenum pyridazine complex le or 2e, two changes were observed in the IR spectra. The "E" band is split into two absorptions separated by 7 cm⁻¹ for 1e at -30 \degree C and by 6 cm⁻¹ for 2e at -50 °C.

The second change consists of a small but significant shift of the lowest frequency band, attributable to the symmetrical stretching mode (" A_1^2 ") of the axial CO group, by 1 and 3 cm^{-1} for 1e and 2e, respectively. The splitting of the "E" band indicates an increasing asymmetry of the pentacarbonylmetal fragment upon cooling which most probably arises from the slower rotation of the diazene ligand around the metal-nitrogen bond. The shift of the " A_1^2 " band to lower frequency is in agreement with the increasing concentration of the staggered conformer B upon cooling; this is explained by the decreased metal-diazene π bonding in B as postulated from the electronic spectra. This weak shift is in accordance with the variation of the "A₁^{2"} frequencies in substituted $W(CO)_{5}(4-py)$: it was found that electron-withdrawing groups $(R = CN)$ shift this band to a higher frequency³⁷ and that the metal-carbonyl absorptions are not very sensitive to slight changes in the amount of tungsten-pyridine π bonding.¹⁶ As was discussed above, small changes of π bonding can be better detected by electronic absorption spectroscopy.

Dynamic NMR Spectra. The ¹³C NMR spectra of (ben $zo[c]$ cinnoline)M(CO)₅ (M = Cr, Mo, W) have been reported very recently.⁴ Four distinct signals were observed for the chromium complex $(1g)$ and eight for the tungsten analogue (3g) in room-temperature CDCl₃ solutions. On the basis of these observations the authors concluded that in 3g the $M(CO)$ ₅ group is rigidly bonded to one nitrogen of the N=N bond, whereas in the case of lg it may be "shuttling" back and forth between the two nitrogen atoms.4 This type of metal 1,2-shift along the $N=$ N bond has been demonstrated to occur in $(2,3$ -diazanorbornene)Cr(CO)₂Ar $(Ar = C_6H_6$ etc.) by dynamic ¹H NMR spectroscopy.²²

We have reexamined the spectra of 1g and 3g and determined their temperature dependence (Table V).

Contrary to the reported⁴ different ¹³C NMR data of 1g and 3g we observe four signals for both complexes at room temperature. However, eight lines are found for both compounds at -60 °C. At this temperature the chemical shifts of 3g agree well with those reported for room temperature⁴ except one signal at δ 129.4 which we do not observe and which most likely originates from the free ligand formed by partial decomposition of 3g. This temperature dependence strongly suggests that the complexes lg and 3g at room temperature undergo a 1,2-shift of the $M(CO)$ ₅ group which is fast compared to the NMR time scale. The occurrence of this process is unambiguously demonstrated by the dynamic 'H NMR spectra of $1g$ in CDCl₃ (Figure 10).

At -60 °C the spectrum contains three groups of signals at δ 9.12, 8.60, and 8.00 of integral ratio 1:3:4, respectively. The signal at δ 8.00, assigned to H⁴, H⁵, H^{4'}, H^{5'} shows no temperature effect and is therefore omitted in Figure 10; it is only slightly shifted compared to the free ligand value of **6** 7.85 (for the atom numbering see Figure 11). The two low-field signals at 6 9.12 and 8.60 are assigned to **H2',** H2 and $H³$, $H³$, respectively, and clearly demonstrate that the diazene ligand is asymmetrically bonded to the metal; H^2 , H^2 and H^3 , $H³$ absorb at δ 8.69 and 8.46 in the free ligand. Thus, at -60 "C the metal is rigidly bonded to one nitrogen.

Upon warming up, the signals first broaden $(-40 \text{ to } 0 \text{ °C})$, and then become sharp again (+30 to +50 $^{\circ}$ C) giving rise to two signals of ratio 1:l at *6* 8.59 and 8.92. The spectral (Diazene)pentacarbonylmetal Complexes

Figure 11. Dynamic behavior of (diazene)pentacarbonylmetal complexes as in, e.g., **lg** and **3g** (M = Cr, W).

changes observed are best explained by coalescence of the $H²$ and H^2 signals due to the facilitated 1,2-shift of $M(CO)$ ₅ upon increasing the temperature. At 50 $^{\circ}$ C this "shuttling" is fast enough to give rise to a symmetrical spectrum. The detailed nature of this dynamic behavior is currently under investigation. From the observation that "shuttling" in the diazanorbornene complex **3b** occurs at much higher temperature, it may be concluded that the activation energy of the process is higher in complexes with high-lying $\pi^*(N=N)$ orbitals.

Figure 11 summarizes the dynamic behavior of (diazene)pentacarbonylmetal complexes: in addition to restricted rotation around the metal-nitrogen bond as demonstrated by the changes in the electronic absorption spectra at temperatures lower than -100 °C, these compounds undergo a 1,2-shift of the M(CO), group at higher temperatures.

Experimental Section

All manipulations with organometallic compounds were carried out in an argon atmosphere. Solvents were distilled under argon from lithium aluminum hydride before use.

Irradiations were performed with a Philips HPK 125-W lamp using a Pyrex filter $(\lambda \geq 290 \text{ nm})$. Florisil was three-times degassed and argonated prior to use. The pyrazolines,^{39,40} benzo $[c]$ cinnoline,⁴¹ 2,3-diazanorbornene,⁴¹ cis-azobenzene,⁴³ and dicyclohexyldiazene⁴⁴ were prepared according to literature methods. Pyridazine, 2 cyanopyridine, 2-methylpyridine, and the metal hexacarbonyls are commercially available.

IR spectra were obtained with a Perkin-Elmer Model 621 spectrophotometer; a modified Beckman low-temperature cell was used for measuring temperature-dependent spectra.

UV-visible absorption spectra were recorded with a Cary 17 spectrophotometer; temperature-dependent spectra were obtained with a SEM Briickl HRS 4001 C spectrophotometer equipped with cylindrical all-quartz cells surrounded by a cooling and vacuum jacket (Fa. Hellma); cooling was accomplished by nitrogen gas evaporated from liquid nitrogen by electrical heating which was relay controlled via a thermocouple inserted into the sample cell;⁴⁵ in all measurements room-temperature spectra were identical before and after cooling to -185 °C demonstrating reversibility and stability of the samples.

NMR spectra were recorded with a Bruker WH-270 and a Varian A 60 A instrument. Variable-temperature samples were freezepump-thaw degassed before sealing the NMR tube; all **6** values are in ppm relative to Me4Si as internal standard.

Luminescence data were obtained with a Hitachi MPF-2A spectrophotometer; the photomultiplier was a Hamamazu R 456. Sample solutions were carefully degassed by repeated freezepump-thaw cycles in quartz tubes, before insertion into a 77 K all-quartz Dewar. The complexes **3f** and **3g** are particularly sensitive and care must be exercised to prevent decomposition during sample preparation.

Elemental analysis was performed by Mikroanalytisches Laboratorium Dornis & Kolbe, Miilheim/Ruhr.

Synthesis of (L)M(CO),. Two millimoles of the appropriate ligand were added to 2 mmol of photogenerated M(CO)₅(THF) in tetrahydrofuran (THF) and the solution was irradiated. The color generally turned from yellow to red, except for **4** and **5** (yellow to orange); product formation was monitored by TLC and IR spectroscopy. The product was isolated by concentrating the solution at 0.1 Torr to about 10 mL followed by column chromatography on silica gel. In the case of complex 3b the solution was evaporated to dryness, excess $W(CO)_{6}$ was sublimed off at 30 °C (0.1 Torr), and the residue was crystallized from n-hexane. The concentrated THF solutions of **2e** and **3e** were washed¹⁰ two times with 25 mL of H_2O and dried before chroma-

tography or crystallization. Elution agents, crystallization solvents, yields, and elemental analyses are given below.

1c: toluene, Et_2O/n -hexane, 55%. Anal. Calcd for $C_{15}CrH_{16}N_2O_9$: C, 42.86; Cr, 12.38; H, 3.81; N, 6.66. Found: C, 42.94; Cr, 11.94; 3 H); 0.76 d *(J* = 8 Hz, 3 H); 1.15 sept (1 H); 2.30 **q** (1 H); 3.08 s (3 H); 3.27 s (3 H); 3.90, 4.30 (centers of two quartets, $CH₂$ group). H, 3.86; N, 6.42. ¹H NMR (270 MHz, C₆D₆): 0.3 d ($J = 8$ Hz,

2e: toluene/ethyl acetate (4:1), THF/n-hexane, 3%. Anal. Calcd for C9H4MoN205: C, 34.17; H, 1.26; N, 8.86. Found: C, 34.40; H, 1.33; N, 8.90.

3b: no chromatography, n-hexane, 60%. Anal. Calcd for $C_{10}H_8N_2O_5W$: C, 28.57; H, 1.9; N, 6.67; W, 43.81. Found: C, 28.50; H, 1.65; N, 6.51; W, 43.51. ¹H NMR (60 MHz, C₇D₈): 4.1 s (br, 1 H); 4.3 s (br, 1 H); 1–0 m (6 H). ¹³C NMR (CCl₃F/C₇D₈): 87.4, 78.3 (C(1), C(4)); 22.87, 21.59 (C(5), C(6)); 41.54 (C(7)); 202.63 (trans CO); 197.84 (cis CO).

3c: toluene, Et_2O/n -hexane, 90%. Anal. Calcd for $C_{15}H_{16}N_2O_9W$: C, 32.60; H, 2.89; N, 5.07; W, 33.33. Found: C, 32.45; H, 2.80; N, H); 0.77 d *(J* = 6 Hz, 3 H); 1.17 sept (1 H); 2.35 q (1 H); 3.09 **^s** (3 H); 3.27 s (3 H); 3.96, 4.34 (centers of two quartets, CH₂ group). 5.08; W, 33.18. ¹H NMR (270 MHz, C₆D₆): 0.35 d ($J = 6$ Hz, 3

3d: toluene, toluene/n-hexane, 40%. Anal. Calcd for $C_{18}H_{14}N_2O_9W$: C, 36.86; H, 2.39; N, 4.78; W, 31.40. Found: C, **s** (3 H); 3.21 **s** (3 H); 3.79 t (1 H); 4.23,4.44 (centers of two quartets, CH2 group); 6.93 m **(5** H). 37.63; H, 2.30; N, 4.92; W, 32.06. ¹H NMR (270 MHz, C₆D₆): 2.74

3e: no chromatography (vide supra), n-hexane, 50%. Anal. Calcd for $C_9H_4N_2O_5W$: C, 26.73; H, 0.99; N, 6.93; W, 45.54. Found: C, 27.44; H, 1.10; N, 6.90; W, 44.92. ¹H NMR (60 MHz, CDCl₃): 9.43 m, 8.95 m (H(3), H(6)); 7.55 m (H(7), H(5)).

4: toluene/ethyl acetate (9:1), Et₂O/n-hexane, 20%. Anal. Calcd for $C_{11}H_7NO_5W$: C, 31.65; H, 1.68; N, 3.36; W, 44.12. Found: C, 31.62; H, 1.93; N, 3.38; W, 43.92.

5: ethyl acetate, toluene/n-hexane, 50%. Anal. Calcd for $C_{11}H_4N_2O_5W$: C, 30.84; H, 0.93; N, 6.54; W, 42.99. Found: C, 30.60; H, 0.82; N, 6.42; W, 42.66.

Acknowledgment. We are highly indebted to Dr. D. Henneberg (mass spectra), E. Lindner (dynamic electronic absorption spectra), V. Seeling (emission spectra), W. Riemer (IR, UV and NMR spectra), and **B.** Ulbrich for valuable technical assistance. H.K. thanks Dr. F. Olbrich for many stimulating discussions. Special credit is given to Professor G. Huttner for a gift of **(trans-dicyclohexy1diazene)penta**carbonylchromium.

Registry No. la, 56628-81-0; **lb,** 30931-84-1; **IC,** 67049-37-0; **le,** 54070-89-2; **If,** 58448-96-7; **lg,** 54218-73-4; **2e,** 67049-36-9; **3b,** 67049-35-8; **3c,** 67049-34-7; **3d,** 67049-33-6; **3e,** 65761-20-8; **3f,** 67049-32-5; 3g, 54218-80-3; (2-Mepy)W(CO)₅, 39210-59-8; (4-Mepy)W(CO)₅, 17000-14-5; (py)W(CO)₅, 14586-49-3; (4-Acpy)-W(CO),, 60166-30-5; (2-CNpy)W(CO),, 36252-42-3; **g,** 230-17-1.

References and Notes

- For a recent summary see: A. Albini and H. Kisch, *Top. Curr. Chem.,* **65**, 105 (1976), and references therein.
S. D. Ittel and J. A. Ibers, *Inorg. Chem.*, 14, 1183 (1975).
M. Herberhold and K. Leonhard, *Angew. Chem.*, **88**, 227 (1976).
M. Kooti and J. F. Nixon, *J. Organomet. Chem.*, **105**
-
-
- (a) M. S. Wrighton, G. S. Hammond, and H. B. Gray, J. Am. Chem.
Soc., 93, 4336 (1971); (b) Inorg. Chem., 11, 3122 (1972); (c) Mol.
Photochem., 5, 179 (1973); (d) M. S. Wrighton, Chem. Rev., 74, 401 (1974).
- See, e&: K. R. Mann, H. B. Gray, and G. S. Hammond, *J. Am. Chem.*
- *Soc.,* 99, 306 (1977). **M. S.** Wrighton and D. Morse, *J. Organomet. Chem.,* 97,405 (1975).
- H. tom Dieck and **I.** W. Renk, *Angew. Chem., 82,* 805 (1970). (a) M. S. Wrighton, H. B. Abramhamson, and D. L. Morse, *J. Am. Chem.*
- (9) *Soc.,* 98,4105 (1976); (b) M. Herberhold and H. Brabetz, *Chem. Ber.,* 103,3896,3909 (1970); (c) E. 0. Fischer, H. J. Kollmeier, C. G. Kreiter, J. Muller, and R. D. Fischer, *J. Organomet. Chem., 22,* C39 (1970). **M.** Herberhold, W. Golla, and K. Leonhard, *Chem. Ber.,* 107, 3209 (1974).
-
- W. Strohmeier, *Angew. Chem., 76,* 873 (1964). G. Huttner, H. G. Schmid, H. Willenberg, and Th. Stark, *J. Organomet.*
- *Chem.,* 94, C3 (1975). C. Kruger, *Chem. Ber.,* 106, 3230 (1973).
-
- H. Saito, J. Fujeta, and K. Saito, *Bull. Chem. SOC. Jpn.,* **41,** 359, 863 (1968).
- As may be deduced from correlation of the first vertical ionization potential with $E(n, \pi^*)$.^{1,19}
- **(16) M.** A. **M.** Meester, R. C. J. Vriends, D. J. Stukens, and K. Vrieze, *Inorg. Chim. Acta,* **19**, 95 (1976).
(17) For a discussion of the bonding and electronic absorption spectrum see:
- **(17)** For a discussion of the bonding and electronic absorption spectrum see: (a) F. **A.** Cotton, W. T. E. Edwards, **F.** C. Rauch, M. A. Graham, R. N. Perutz, and J. J. Turner, *J. Coord. Chem.,* **2, 247 (1973);** (b) M. Elian and R. Hoffmann, *Inorg. Chem.,* **14,1058 (1975);** (c) J. K. Burdett, *J. Chem.* Soc., *Faraday Trans.* **2, 70, 1599 (1974).**
- **(18) B.** R. Higginson, D. R. Lloyd, J. A. Connor, and J. H. Hillier, *J. Chem.* Soc., *Faraday Trans.* **2, 70, 1418 (1974). (19)** K. **N.** Houk, *Y.* M. Chang, and P. S. Engel, *J. Am. Chem.* **SOC., 97,**
- **1824 (1975).**
- **(20)** For a discussion of the electronic structure of diazenes see ref **1** and references cited therein.
- (21) This was also postulated for $(\text{arene})Cr(CO)_2(2,3\text{-}diazanorbormene)^{22}$ and $Fe(CO)_4(2,3\text{-}diazanorbormene).^{23,24}$
- **(22)** M. Herberhold, K. Leonhard, and C. G. Kreiter, *Chem. Eer.,* **107, 3222** (**1974).**
- **(23)** A. Albini and H. Kisch, *Angew. Chem.,* **87,** *206* **(1975).**
- **(24)** H. Kisch, unpublished results.
- (25) Due to the absence of C_{4v} symmetry for the diazene complexes (see also section on IR spectra) the d_{xx} , d_{yz} orbitals are not degenerate.
- **(26) It is not possible to make the same plot for the chromium complexes due to overlapping bands at -185 °C.
(27) The process is similar to olefin rotation in low-valent metal complexes.**
- For an MO calculation of the total energy as function of the rotational angle of the olefin see ref **28;** the temperature-dependent NMR spectra are summarized in ref **29.**
- **(28)** K. *S.* Wheelock, J. H. Nelson, L. C. Cusachs, and H. B. Jonassen, *J. Am. Chem.* SOC., **92, 5110 (1970).**
- **(29)** L. **M.** Jackmann and F. A. Cotton, Ed., "Dynamic Nuclear Magnetic
- Resonance", Academic Press, New York, N.Y., **1975,** p **428.**
-
- (30) See, e.g.: M. S. Newman, Ed., "Steric Effects in Organic Chemistry",
Wiley, New York, N.Y., 1956, p 44
(31) Due to overlapping CTML bands for both conformers (see Figure 6),
it is impossible to determine the relative **aman** and em. It may be estimated that the fraction of A present at roam temperature is **20-40%.** The decrease to **0-20%** by cooling to **-185** "C should be easily observable by the UV method.
- (32) Due to the strong spin-orbit coupling, the classification of singlet and triplet excited states is a crude oversimplification.³³
- **(33)** G. A. Crosby, K. W. Hipps, and W. H. Elfring, Jr., *J. Am. Chem.* SOC., **96, 629 (1974)**
- **(34) B.** J. Cohen, H. Baba, and L. Goodman, *J. Chem. Phys.,* **43,2902 (1965).**
- **(35)** E. Lippert and W. Voss, *Z. Phys. Chem. (Frankfurt am Main),* **31, 321 (1962).**
- **(36) F. A.** Cotton and C. Kraihanzel, *J. Am. Chem.* Soc., **84, 4432 (1962). (37) F.** R. Young, R. A. Levenson, M. N. Memering, and G. R. Dobson, *Inorg.*
- *Chim. Acta,* **8, 61 (1974).** (38) For facilitating the discussion we still use the C_{4v} symmetry labels but put these in quotation marks $\overline{C_{4v}}$
- **(39)** K. Tortschanoff, H. Kisch, and 0. E. Polansky, *Justus Liebigs Ann. Chem.,* **449 1975.**
-
-
-
-
- (40) H. Kisch, *J. Organomet. Chem.*, 30, C25 (1971).
(41) S. Pietra and M. Res, Ann. Chim. (Rome), **48**, 299 (1958).
(42) P. G. Gassman and K. T. Mansfield, Org. Synth., **49**, 1 (1969).
(43) A. H. Cook, *J. Chem. Soc.*, C. Leitch, *Can. J. Chem.,* **32, 545 (1954).**
- **(45)** For a description of the cooling device see: E. Koch, *Chem.-lng. Tech.,* **41, 916 (1969),** and references therein.

Contribution from Rocketdyne, A Division of Rockwell International, Canoga Park, California 9 1304, and M.A.N., Neue Technologie, D-8000, Muenchen, West Germany

Bromyl Fluoride. Vibrational Spectra, Force Field, and Thermodynamic Properties

KARL 0. CHRISTE,* E. C. CURTIS, and EBERHARD JACOB

Received February 3, *1978*

Infrared spectra are reported for $FBr^{18}O_2$ in the gas phase and for $FBr^{16}O_2$ in Ne, N₂, and Ar matrices at 3.6 K. Isotopic shifts were measured for 79Br-81Br and **160-180** and were used for the computation of a valence force field. Thermodynamic properties were computed for $FBrO₂$ and $FCIO₂$ in the range 0-2000 K.

Introduction

Bromyl fluoride was first synthesized by Schmeisser and Pammer^{1,2} in 1955. Because of its low thermal stability and high reactivity, this compound had been only poorly characterized and was not further studied until 1975. In 1975, Gillespie and Spekkens published³ the Raman spectra of solid and liquid $FBrO₂$ and proposed a monomeric pyramidal structure, similar to that⁴ of $FCIO₂$. Using Raman frequencies reported³ for liquid $FBrO₂$, Baran calculated⁵ a modified valence force field and mean amplitudes of vibration for $FBrO₂$, assuming all bond angles to be 108°. Very recently, Jacob succeeded^{$\bar{6}$} in obtaining good gas-phase infrared spectra for $FBrO₂$ in spite of the fact that gaseous $FBrO₂$ possesses a half-life of only 30 min at 15 °C. He also prepared a sample of $FBr^{18}O_2$ and reported preliminary infrared data for the gas and for the neat and the argon matrix isolated solid. Although the oxygen isotopic shifts were measured, no ⁷⁹Br-81Br isotopic shifts were given.24

In this paper, we report higher resolution spectra and oxygen and bromine isotopic shifts for gaseous and for Ne, N_2 , and Ar matrix isolated $FBrO₂$. In view of the interest^{3,5} in the nature of bonding in $FBrO₂$, a new force field computation

To whom correspondence should be addressed at Rocketdyne.

appeared warranted, particularly since the previously used⁵ frequencies significantly differ from those of gaseous $FBrO₂$ and since the previously assumed⁵ geometry of $FBrO₂$ was only a crude estimate. Furthermore, the availability of both oxygen and bromine isotopic shifts offered a unique opportunity to test the value of such additional data for the refinement of force fields for compounds, such as bromine oxyfluorides.

Experimental Section

The samples of $FBrO₂$ used for recording the gas-phase spectra were prepared, as previously described,⁶ by low-temperature co-
condensation of BrF₅ and H₂O. The infrared spectra of gaseous FBrO₂ were recorded at 15 °C on a Perkin-Elmer Model 325 spectrophotometer in the range 4000-290 cm⁻¹ using a nickel cell with AgBr windows attached to an external mirror system (optical path length 110 cm).

The samples of $FBrO₂$ used for the matrix isolation study were obtained as a byproduct during a spectroscopic study⁷ of BrF_3O . The spectrometer and handling have been previously described.'

Results and Discussion

Infrared Spectra of Gaseous FBr0,. A survey infrared spectrum of gaseous FBr¹⁸O₂ is shown in Figure 1. The corresponding spectrum of $FBr^{16}O₂$ has previously been re-

0020-1669/18/ 13 17-2744\$01 **.OO/O** @ 1978 American Chemical Society